Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression.

Identifieur interne : 000122 ( Main/Exploration ); précédent : 000121; suivant : 000123

Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression.

Auteurs : Meenakshi S. Kagda [États-Unis] ; Domingo Martínez-Soto [États-Unis] ; Audrey M V. Ah-Fong [États-Unis] ; Howard S. Judelson [États-Unis]

Source :

RBID : pubmed:33051363

Abstract

The oomycete Phytophthora infestans, the causal agent of potato and tomato blight, expresses two extracellular invertases. Unlike typical fungal invertases, the P. infestans genes are not sucrose induced or glucose repressed but instead appear to be under developmental control. Transcript levels of both genes were very low in mycelia harvested from artificial medium but high in preinfection stages (sporangia, zoospores, and germinated cysts), high during biotrophic growth in leaves and tubers, and low during necrotrophy. Genome-wide analyses of metabolic enzymes and effectors indicated that this expression profile was fairly unusual, matched only by a few other enzymes, such as carbonic anhydrases and a few RXLR effectors. Genes for other metabolic enzymes were typically downregulated in the preinfection stages. Overall metabolic gene expression during the necrotrophic stage of infection clustered with artificial medium, while the biotrophic phase formed a separate cluster. Confocal microscopy of transformants expressing green fluorescent protein (GFP) fusions indicated that invertase protein resided primarily in haustoria during infection. This localization was not attributable to haustorium-specific promoter activity. Instead, the N-terminal regions of proteins containing signal peptides were sufficient to deliver proteins to haustoria. Invertase expression during leaf infection was linked to a decline in apoplastic sucrose, consistent with a role of the enzymes in plant pathogenesis. This was also suggested by the discovery that invertase genes occur across multiple orders of oomycetes but not in most animal pathogens or a mycoparasite.IMPORTANCE Oomycetes cause hundreds of diseases in economically and environmentally significant plants. How these microbes acquire host nutrients is not well understood. Many oomycetes insert specialized hyphae called haustoria into plant cells, but unlike their fungal counterparts, a role in nutrition has remained unproven. The discovery that Phytophthora invertases localize to haustoria provides the first strong evidence that these structures participate in feeding. Since regions of proteins containing signal peptides targeted proteins to the haustorium-plant interface, haustoria appear to be the primary machinery for secreting proteins during biotrophic pathogenesis. Although oomycete invertases were acquired laterally from fungi, their expression patterns have adapted to the Phytophthora lifestyle by abandoning substrate-level regulation in favor of developmental control, allowing the enzymes to be produced in anticipation of plant colonization. This study highlights how a widely distributed hydrolytic enzyme has evolved new behaviors in oomycetes.

DOI: 10.1128/mBio.01251-20
PubMed: 33051363
PubMed Central: PMC7554665


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression.</title>
<author>
<name sortKey="Kagda, Meenakshi S" sort="Kagda, Meenakshi S" uniqKey="Kagda M" first="Meenakshi S" last="Kagda">Meenakshi S. Kagda</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martinez Soto, Domingo" sort="Martinez Soto, Domingo" uniqKey="Martinez Soto D" first="Domingo" last="Martínez-Soto">Domingo Martínez-Soto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA howard.judelson@ucr.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33051363</idno>
<idno type="pmid">33051363</idno>
<idno type="doi">10.1128/mBio.01251-20</idno>
<idno type="pmc">PMC7554665</idno>
<idno type="wicri:Area/Main/Corpus">000065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000065</idno>
<idno type="wicri:Area/Main/Curation">000065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000065</idno>
<idno type="wicri:Area/Main/Exploration">000065</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression.</title>
<author>
<name sortKey="Kagda, Meenakshi S" sort="Kagda, Meenakshi S" uniqKey="Kagda M" first="Meenakshi S" last="Kagda">Meenakshi S. Kagda</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martinez Soto, Domingo" sort="Martinez Soto, Domingo" uniqKey="Martinez Soto D" first="Domingo" last="Martínez-Soto">Domingo Martínez-Soto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA howard.judelson@ucr.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The oomycete
<i>Phytophthora infestans</i>
, the causal agent of potato and tomato blight, expresses two extracellular invertases. Unlike typical fungal invertases, the
<i>P. infestans</i>
genes are not sucrose induced or glucose repressed but instead appear to be under developmental control. Transcript levels of both genes were very low in mycelia harvested from artificial medium but high in preinfection stages (sporangia, zoospores, and germinated cysts), high during biotrophic growth in leaves and tubers, and low during necrotrophy. Genome-wide analyses of metabolic enzymes and effectors indicated that this expression profile was fairly unusual, matched only by a few other enzymes, such as carbonic anhydrases and a few RXLR effectors. Genes for other metabolic enzymes were typically downregulated in the preinfection stages. Overall metabolic gene expression during the necrotrophic stage of infection clustered with artificial medium, while the biotrophic phase formed a separate cluster. Confocal microscopy of transformants expressing green fluorescent protein (GFP) fusions indicated that invertase protein resided primarily in haustoria during infection. This localization was not attributable to haustorium-specific promoter activity. Instead, the N-terminal regions of proteins containing signal peptides were sufficient to deliver proteins to haustoria. Invertase expression during leaf infection was linked to a decline in apoplastic sucrose, consistent with a role of the enzymes in plant pathogenesis. This was also suggested by the discovery that invertase genes occur across multiple orders of oomycetes but not in most animal pathogens or a mycoparasite.
<b>IMPORTANCE</b>
Oomycetes cause hundreds of diseases in economically and environmentally significant plants. How these microbes acquire host nutrients is not well understood. Many oomycetes insert specialized hyphae called haustoria into plant cells, but unlike their fungal counterparts, a role in nutrition has remained unproven. The discovery that
<i>Phytophthora</i>
invertases localize to haustoria provides the first strong evidence that these structures participate in feeding. Since regions of proteins containing signal peptides targeted proteins to the haustorium-plant interface, haustoria appear to be the primary machinery for secreting proteins during biotrophic pathogenesis. Although oomycete invertases were acquired laterally from fungi, their expression patterns have adapted to the
<i>Phytophthora</i>
lifestyle by abandoning substrate-level regulation in favor of developmental control, allowing the enzymes to be produced in anticipation of plant colonization. This study highlights how a widely distributed hydrolytic enzyme has evolved new behaviors in oomycetes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">33051363</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01251-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.01251-20</ELocationID>
<Abstract>
<AbstractText>The oomycete
<i>Phytophthora infestans</i>
, the causal agent of potato and tomato blight, expresses two extracellular invertases. Unlike typical fungal invertases, the
<i>P. infestans</i>
genes are not sucrose induced or glucose repressed but instead appear to be under developmental control. Transcript levels of both genes were very low in mycelia harvested from artificial medium but high in preinfection stages (sporangia, zoospores, and germinated cysts), high during biotrophic growth in leaves and tubers, and low during necrotrophy. Genome-wide analyses of metabolic enzymes and effectors indicated that this expression profile was fairly unusual, matched only by a few other enzymes, such as carbonic anhydrases and a few RXLR effectors. Genes for other metabolic enzymes were typically downregulated in the preinfection stages. Overall metabolic gene expression during the necrotrophic stage of infection clustered with artificial medium, while the biotrophic phase formed a separate cluster. Confocal microscopy of transformants expressing green fluorescent protein (GFP) fusions indicated that invertase protein resided primarily in haustoria during infection. This localization was not attributable to haustorium-specific promoter activity. Instead, the N-terminal regions of proteins containing signal peptides were sufficient to deliver proteins to haustoria. Invertase expression during leaf infection was linked to a decline in apoplastic sucrose, consistent with a role of the enzymes in plant pathogenesis. This was also suggested by the discovery that invertase genes occur across multiple orders of oomycetes but not in most animal pathogens or a mycoparasite.
<b>IMPORTANCE</b>
Oomycetes cause hundreds of diseases in economically and environmentally significant plants. How these microbes acquire host nutrients is not well understood. Many oomycetes insert specialized hyphae called haustoria into plant cells, but unlike their fungal counterparts, a role in nutrition has remained unproven. The discovery that
<i>Phytophthora</i>
invertases localize to haustoria provides the first strong evidence that these structures participate in feeding. Since regions of proteins containing signal peptides targeted proteins to the haustorium-plant interface, haustoria appear to be the primary machinery for secreting proteins during biotrophic pathogenesis. Although oomycete invertases were acquired laterally from fungi, their expression patterns have adapted to the
<i>Phytophthora</i>
lifestyle by abandoning substrate-level regulation in favor of developmental control, allowing the enzymes to be produced in anticipation of plant colonization. This study highlights how a widely distributed hydrolytic enzyme has evolved new behaviors in oomycetes.</AbstractText>
<CopyrightInformation>Copyright © 2020 Kagda et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Kagda</LastName>
<ForeName>Meenakshi S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Martínez-Soto</LastName>
<ForeName>Domingo</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Ah-Fong</LastName>
<ForeName>Audrey M V</ForeName>
<Initials>AMV</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Judelson</LastName>
<ForeName>Howard S</ForeName>
<Initials>HS</Initials>
<Identifier Source="ORCID">0000-0001-7865-6235</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA howard.judelson@ucr.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">metabolism</Keyword>
<Keyword MajorTopicYN="Y">nutrition</Keyword>
<Keyword MajorTopicYN="Y">oomycetes</Keyword>
<Keyword MajorTopicYN="Y">plant pathogens</Keyword>
<Keyword MajorTopicYN="Y">transcriptional regulation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>12</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33051363</ArticleId>
<ArticleId IdType="pii">mBio.01251-20</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.01251-20</ArticleId>
<ArticleId IdType="pmc">PMC7554665</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 2000 Oct;182(19):5351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10986236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1991 Feb;137(2):315-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2016586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 Jul;234(1):138-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1495476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Oct;186(20):6915-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Apr;179(4):1265-1272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30824565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2010 Mar;34(2):107-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19925633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Feb 23;18(1):198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28228125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Aug 28;9(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30154258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;396:71-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 28;11(5):e1004805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Sep;115(9):882-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21872185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Aug;108(8):916-924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29979126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Sep;215(4):1548-1561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28744865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Oct 27;11(10):e0163803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27788144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2019 Apr 19;15(4):e1007729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31002734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e51399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23272103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Dec 16;354(6318):1427-1430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27884939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(11):3989-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Jun 13;13(6):e0198186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29897992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1993 Mar;23(3):211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8382110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Nov 4;9(1):15975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31685900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Mar;185(4):882-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20356343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mamm Genome. 2003 Dec;14(12):859-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14724739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2016 Sep 20;17:388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27650223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Apr 4;13(4):1848-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24588563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Jul;108(7):858-869</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29442578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W566-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25969447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Oct;1857(10):1715-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27487250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jun 06;3:117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22685447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Nov;3(6):1037-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1963 Nov 8;77:455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14089421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2008 Nov;10(11):2271-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18637942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Nov;10(6):843-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19849790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 28;8(6):e67008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1982 Oct;152(1):14-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6749804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jun;29(6):1184-1195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28522546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Feb;30(2):300-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29371439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;835:603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22183681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Oct 10;18(1):764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29017458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Oct;216(1):205-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28758684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jun;19(6):625-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16776296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Jun;59(6):1104-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1984 Dec;108(4):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6392017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2014 Jul;85(4-5):473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24817131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010 Feb 09;8(2):e1000303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20161717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Oct;15(8):858-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24646208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Jan;10(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2018 Jul 1;34(13):i43-i51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29949964</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Kagda, Meenakshi S" sort="Kagda, Meenakshi S" uniqKey="Kagda M" first="Meenakshi S" last="Kagda">Meenakshi S. Kagda</name>
</region>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<name sortKey="Martinez Soto, Domingo" sort="Martinez Soto, Domingo" uniqKey="Martinez Soto D" first="Domingo" last="Martínez-Soto">Domingo Martínez-Soto</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33051363
   |texte=   Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33051363" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020